Pollen, Blütenpollen oder Blütenstaub
Der Pollen, Blütenpollen oder Blütenstaub ist die meist mehlartige Masse, die in den Antheren der Samenpflanzen gebildet wird. Pollen ist die Gesamtheit der Pollenkörner (Mikrosporen). Eine einzelne Mikrospore ist nicht ein Pollen, sondern ein Pollenkorn.
Pollenkörner werden in den Pollensäcken der Antheren eines Staubblatts gebildet. Sie werden von den Pollenmutterzellen (auch Mikrosporenmutterzellen genannt) durch zwei aufeinanderfolgende Zellteilungen, wovon eine meiotisch ist, gebildet. Es sind nun vier Pollenkörner entstanden. Die Ernährung der Pollenkörner und die Bildung der Exine geschieht durch das Tapetum, die innerste Schicht der Antherenwand.
Da das Pollenkorn (Meiospore) das Ergebnis einer Reduktionsteilung (Meiose) ist, besitzt es somit nur einen einfachen Chromosomensatz, ist also haploid. Es entspricht damit den Sporen der Moose und Farne. Die Pollenkörner sind von einer widerstandsfähigen Zellwand umgeben, die unter anderem aus Sporopollenin besteht. Zum Zeitpunkt der Freisetzung haben sich die Pollenkörner bereits zu den männlichen Gametophyten entwickelt, die dazu dienen, die männlichen Keimzellen (Gameten) geschützt zu den weiblichen Empfangsorganen zu bringen und so die Bestäubung und in weiterer Folge die Befruchtung zu gewährleisten.
Pollenkörner sind nach Größe, Form und Oberflächenstruktur sehr vielgestaltig, so dass sich Pollenkörner meist leicht den jeweiligen Arten oder zumindest Gattungen zuordnen lassen. Die meisten Pollenkörner sind zwischen 10 und 100 Mikrometer groß, die größten bildet Cucurbita mit 170 bis 180 Mikrometer Durchmesser.
Pollenkörner besitzen eine widerstandsfähige Wand, die Sporoderm genannt wird. Das Sporoderm besteht aus zwei Schicht-Komplexen:
- der inneren Intine
Die Intine umgibt die Zelle vollständig, ist jedoch meist zart und nicht besonders widerstandsfähig. Häufig besteht sie aus zwei bis drei Schichten, wobei die äußerste einen hohen Pektin-Anteil hat, was ein einfaches Loslösen von der Exine ermöglicht. Die inneren Schichten bestehen hauptsächlich aus Zellulose-Fibrillen. Beim Auskeimen des Pollenkorns wächst die Intine zum Pollenschlauch aus. - der äußeren Exine
Der Hauptbestandteil der Exine ist das widerstandsfähige Sporopollenin, das in rund sechs Nanometer großen Granula die Exine aufbaut. Diese besteht aus zwei Schichten: der inneren Endexine und der äußeren Ektexine.
Bei den Gymnospermen (Nacktsamer) besitzt die Endexine eine lamelläre Struktur. Die Ektexine besteht wiederum aus einer inneren Fußschicht (foot layer) und einer äußeren kompakten Schicht, die eine granuläre oder alveoläre Mittelschicht einhüllen.
Bei den Angiospermen (Bedecktsamer) ist die Endexine granulär aufgebaut. Die Endexine und die dichte Fußschicht der Ektexine wird zur Nexine zusammengefasst. Der übrige Teil der Ektexine bildet die Sexine, die meist sehr stark strukturiert ist. Besteht die Sexine aus Stäbchen, Keulen, Kegeln, Warzen und ähnlichen Strukturen, jedoch ohne eine Außenschicht, spricht man von intectaten Pollenkörnern. Bei tectaten Pollenkörnern sind die Säulchen (Columellae, Bacula) an der Außenseite zu einer Schicht, dem Tectum, verbunden. Das Tectum kann wiederum sehr vielgestaltig sein: durchbrochen, mehrschichtig, selbst wiederum skulpturiert.
In den Hohlräumen des Tectum sind verschiedene Substanzen auf- beziehungsweise eingelagert:
- Pollenkitt (oder Pollenklebstoff) ist eine ölige Substanz aus Lipiden und Carotinoiden und bewirkt, dass die Pollenkörner an den Bestäubern anhaften. Pollenkitt wird nur von Angiospermen gebildet, kann jedoch auch fehlen.
- Inkompatibilitätsproteine: Diese dienen der Verhinderung der Selbstbefruchtung.
Die Struktur der Exine wird vom Pollenkorn gesteuert. Das Material, das Sporopollenin, wird allerdings vom Tapetum der Antherenwand gebildet und auf das Pollenkorn aufgelagert.
An den Pollenkörnern befinden sich eine oder meist mehrere Keimöffnungen (Aperturen). An dieser Stelle fehlt die äußere Exine-Schicht. Durch sie kann dann die Intine als Pollenschlauch hindurchwachsen. Das Pollenkorn besitzt einen proximalen Pol, das ist der ins Zentrum der Pollentetrade weisende Polund einen distalen Pol. Senkrecht zu den Polen steht die Äquatorialebene.
Pollen ohne Apertur nennt man inaperturat, solche mit aperturat.
Längsgestreckte Keimfalten nennt man Sulcus, wenn sie am distalen Pol liegen. Der Pollen ist dann sulcat. Dies trifft für die meisten Nacktsamer zu.
Äquatoriale oder auf der ganzen Oberfläche verteilte Keimfalten nennt man Colpus, den Pollen colpat.
Ulcus ist eine rundliche Keimpore am distalen Pol (Adjektiv ulcerat).
Porus ist eine Keimpore am äquatorialen Pol oder auf der gesamten Oberfläche (Adjektiv porat).
Zusammengesetzte Keimöffnungen nennt man colporat.
Nach der Anzahl der Keimöffnungen unterscheidet man mono- (ein), tri- (drei), stephano- (mehr als drei in Äquatorebene) und panto-aperturate (mehr als drei über die gesamte Oberfläche verbreitet) Pollen. In der Äquator-Ebene gelegene Strukturen werden mit der Silbe zono- bezeichnet.
Bei den Einkeimblättrigen und den basalen Dikotylen (Magnoliidae) herrschen mono-aperturate Pollen vor. Bei den Rosopsida sind tricolpate Pollen und deren Abwandlungen vorherrschend.
Die Apertur kann von einem Operculum bedeckt sein, einer von der übrigen Sexine vollständig getrennten Struktur.
Elektrostatische Ladung
Da viele Blütenpflanzen zu aktiver elektrischer Orientierung befähigt sind tragen Pollen oft statische elektrische Ladungen.
Dadurch kann die Pflanze die Ankunft von Pollen (auch an Insekten anhaftend) in der Blüte registrieren und die Blüten beispielsweise weiter öffnen. Das von ihr erzeugte elektrische Feld kann die Pflanze innerhalb von Sekunden ändern, um auf einfallenden Pollen oder Insekten zu reagieren. Aber selbst bei Windbestäubung ist der Ladungsunterschied des Pollens von selektivem Vorteil. Diese Sensibilität wird zur industriellen elektrostatischen Bestäubung genutzt.
Ausbreitungseinheiten
In den meisten Fällen werden die Pollenkörner einzeln, also als Monaden, ausgebreitet. Daneben können sie aber auch in Gruppen von zwei oder vier Körnern in die Luft abgegeben werden, man spricht dann von Dyaden bzw. Tetraden. Tetraden bilden sich, wenn die Tochterzellen einer Pollenmutterzelle zusammenhaften. Dies ist etwa bei den Ericaceae der Fall. Bei den Cyperaceae sind drei der vier Tochterzellen reduziert, so dass Pseudomonaden entstehen.
Pollenkörner können zu größeren Gruppen zusammengehalten werdenund zwar durch Pollenkitt; eine weitere Möglichkeit sind Viscinfäden, klebrige Fäden aus Sporopollenin, Cellulose und/oder Proteinen. Bleiben die Pollenkörner mehrerer Pollenmutterzellen miteinander verbunden, entstehen Polyaden aus 8, 16 oder 32 Pollenkörnern, etwa bei den Mimosoideae. Größere Gruppen werden auch als Massulae bezeichnet, Beispiele sind die Akazien und viele Orchideen.
Bleibt der gesamte Inhalt eines oder mehrerer Pollensäcke zusammenhängend, wird er Pollinium genannt. Das Pollinium ist oft von einer gemeinsamen Sporopollenin-Hülle umgebenund tritt bei manchen Vertretern der Apocynaceae und der Orchideen auf. Als Pollinarium bezeichnet man ein Pollinium mit den Anhangsorganen, die der Ausbreitung dienen; bei den Orchideen sind dies Stielchen und Klebscheibe.
Es gibt einen Zusammenhang zwischen der Größe der Pollenpakete und den Bestäubern. Je spezifischer ein Bestäuber auf eine Pflanzenart angepasst ist, etwa bei Orchideen, desto größer sind die Pollenpakete, die ihm mitgegeben werden. Bei unspezifischen Bestäubern (z.B. viele Käfer) sind die einzelnen Pollenpakete klein, da die Wahrscheinlichkeit, dass der Bestäuber wieder eine Blüte der gleichen Art aufsucht, gering ist.
Der Pollen wird vom Wind (Anemogamie), Wasser (Hydrogamie) oder von Tieren (Zoogamie) (z.B. Insekten, Vögel; siehe auch Vogelblume) verbreitet. Der Pollenflug existiert seit schätzungsweise 300 Millionen Jahren und ist für mehr als die Hälfte der Pflanzen zur Bestäubung unerlässlich. Dabei kann der Pollen von einer auf eine andere Blüte übertragen werden (Bestäubung).
Pollenkunde
Da Pollen unter anderem durch den Wind weit verbreitet wird und oft in Seesedimenten oder Torfen erhalten bleibt, ist er in der Geologie und Klimaforschung von großem Interesse. Anhand des gefundenen Pollens lassen sich Rückschlüsse zum Beispiel auf die Geschichte des Waldes in Mitteleuropa und damit auch auf das Klima einer geologischen Periode ziehen. Die sich mit dieser Thematik beschäftigende Wissenschaft nennt man Palynologie. Aufgrund der enthaltenen Pollen kann die Herkunft des Honigs bestimmt werden. Dieses Aufgabengebiet wird als Melissopalynologie bezeichnet.
Ernte
Pollen verschiedener Pflanzen dienen der Bienenbrut als Nahrung. In der Imkerei kann eine spezielle Vorrichtung, eine sogenannte Pollenfalle, am Flugloch eines Bienenstocks angebracht werden. Dies ist im Wesentlichen ein Gitter, durch das sich die heimkehrenden Flugbienen zwängen müssen, wobei sie ihre „Pollenhöschen“ verlieren (abstreifen). Die Pollenklümpchen fallen dabei in ein Auffanggefäß, das in der Regel zweimal am Tag geleert wird. Danach muss der so gewonnene Pollen sofort gereinigt (Fremdkörper aussortieren) und getrocknet werden.
Die Pollenfalle wird in regelmäßig entfernt, damit die für die Aufzucht der Bienenbrut notwendige Eiweißversorgung gewährleistet ist.
Wie das Bienenbrot ist auch der Pollen essbar.
Allergien
Der vom Wind verbreitete Pollen ist für einige Menschen problematisch, da dieser Allergien auslösen kann. Die Pollenkörner können nach Kontakt eine Reihe von Proteinen, Lipiden und Zuckern freisetzen. Auf einige Proteine und Lipide entsteht eine spezifische Immunreaktion, die beim zweiten und jedem weiteren Kontakt eine allergische Reaktion auslöst. Diese kann unter anderem mit geröteten und tränende Augen, Niesen und Schnupfen (allergische Rhinitis) einhergehen. Auf dem Land sind morgens die Pollenkonzentrationen hoch, in der Stadt abends. Die Iatropalynologie beschäftigt sich mit der Aufklärung dieser Wirkungen.